Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 598
Filtrar
1.
Scand J Med Sci Sports ; 34(4): e14619, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572910

RESUMO

OBJECTIVES: Hamstring strain injuries (HSIs) commonly affect the proximal biceps femoris long head (BFlh) musculotendinous junction. Biomechanical modeling suggests narrow proximal BFlh aponeuroses and large muscle-to-aponeurosis width ratios increase localized tissue strains and presumably risk of HSI. This study aimed to determine if BFlh muscle and proximal aponeurosis geometry differed between limbs with and without a history of HSI. METHODS: Twenty-six recreationally active males with (n = 13) and without (n = 13) a history of unilateral HSI in the last 24 months underwent magnetic resonance imaging of both thighs. BFlh muscle and proximal aponeurosis cross-sectional areas, length, volume, and interface area between muscle and aponeurosis were extracted. Previously injured limbs were compared to uninjured contralateral and control limbs for discrete variables and ratios, and along the relative length of tissues using statistical parametric mapping. RESULTS: Previously injured limbs displayed significantly smaller muscle-to-aponeurosis volume ratios (p = 0.029, Wilcoxon effect size (ES) = 0.43) and larger proximal BFlh aponeurosis volumes (p = 0.019, ES = 0.46) than control limbs with no history of HSI. No significant differences were found between previously injured and uninjured contralateral limbs for any outcome measure (p = 0.216-1.000, ES = 0.01-0.36). CONCLUSIONS: Aponeurosis geometry differed between limbs with and without a history of HSI. The significantly larger BFlh proximal aponeuroses and smaller muscle-to-aponeurosis volume ratios in previously injured limbs could alter the strain experienced in muscle adjacent to the musculotendinous junction during active lengthening. Future research is required to determine if geometric differences influence the risk of re-injury and whether they can be altered via targeted training.


Assuntos
Músculos Isquiossurais , Lesões dos Tecidos Moles , Entorses e Distensões , Masculino , Humanos , Músculos Isquiossurais/fisiologia , Aponeurose , Entorses e Distensões/diagnóstico por imagem , Imageamento por Ressonância Magnética , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/lesões
2.
Scand J Med Sci Sports ; 34(4): e14621, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597348

RESUMO

Tendon properties impact human locomotion, influencing sports performance, and injury prevention. Hamstrings play a crucial role in sprinting, particularly the biceps femoris long head (BFlh), which is prone to frequent injuries. It remains uncertain if BFlh exhibits distinct mechanical properties compared to other hamstring muscles. This study utilized free-hand three-dimensional ultrasound to assess morphological and mechanical properties of distal hamstrings tendons in 15 men. Scans were taken in prone position, with hip and knee extended, at rest and during 20%, 40%, 60%, and 80% of maximal voluntary isometric contraction of the knee flexors. Tendon length, volume, cross-sectional area (CSA), and anteroposterior (AP) and mediolateral (ML) widths were quantified at three locations. Longitudinal and transverse deformations, stiffness, strain, and stress were estimated. The ST had the greatest tendon strain and the lowest stiffness as well as the highest CSA and AP and ML width strain compared to other tendons. Biceps femoris short head (BFsh) exhibited the least strain, AP and ML deformation. Further, BFlh displayed the highest stiffness and stress, and BFsh had the lowest stress. Additionally, deformation varied by region, with the proximal site showing generally the lowest CSA strain. Distal tendon mechanical properties differed among the hamstring muscles during isometric knee flexions. In contrast to other bi-articular hamstrings, the BFlh high stiffness and stress may result in greater energy absorption by its muscle fascicles, rather than the distal tendon, during late swing in sprinting. This could partly account for the increased incidence of hamstring injuries in this muscle.


Assuntos
Músculos Isquiossurais , Músculo Esquelético , Masculino , Humanos , Músculo Esquelético/fisiologia , Tendões/diagnóstico por imagem , Tendões/fisiologia , Músculos Isquiossurais/fisiologia , Joelho/diagnóstico por imagem , Joelho/fisiologia , Contração Isométrica/fisiologia , Ultrassonografia
3.
J Strength Cond Res ; 38(4): 681-686, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513176

RESUMO

ABSTRACT: Takeuchi, K, Nakamura, M, Matsuo, S, Samukawa, M, Yamaguchi, T, and Mizuno, T. Combined effects of static and dynamic stretching on the muscle-tendon unit stiffness and strength of the hamstrings. J Strength Cond Res 38(4): 681-686, 2024-Combined static and dynamic stretching for 30 seconds is frequently used as a part of a warm-up program. However, a stretching method that can both decrease muscle-tendon unit (MTU) stiffness and increase muscle strength has not been developed. The purpose of this study was to examine the combined effects of 30 seconds of static stretching at different intensities (normal-intensity static stretching [NS] and high-intensity static [HS]) and dynamic stretching at different speeds (low-speed dynamic [LD] and high-speed dynamic stretching [HD]) on the MTU stiffness and muscle strength of the hamstrings. Thirteen healthy subjects (9 men and 4 women, 20.9 ± 0.8 years, 169.3 ± 7.2 cm, 61.1 ± 8.2 kg) performed 4 types of interventions (HS-HD, HS-LD, NS-HD, and NS-LD). Range of motion (ROM), passive torque, MTU stiffness, and muscle strength were measured before and immediately after interventions by using an isokinetic dynamometer machine. In all interventions, the ROM and passive torque significantly increased (p < 0.01). Muscle-tendon unit stiffness significantly decreased in HS-HD and HS-LD (both p < 0.01), but there was no significant change in NS-HD (p = 0.30) or NS-LD (p = 0.42). Muscle strength significantly increased after HS-HD (p = 0.02) and NS-LD (p = 0.03), but there was no significant change in HS-LD (p = 0.23) or NS-LD (p = 0.26). The results indicated that using a combination of 30 seconds of high-intensity static stretching and high-speed dynamic stretching can be beneficial for the MTU stiffness and muscle strength of the hamstrings.


Assuntos
Músculos Isquiossurais , Exercícios de Alongamento Muscular , Masculino , Humanos , Feminino , Tendões/fisiologia , Músculos Isquiossurais/fisiologia , Força Muscular/fisiologia , Torque , Amplitude de Movimento Articular/fisiologia , Músculo Esquelético/fisiologia
4.
PLoS One ; 19(2): e0298146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408057

RESUMO

INTRODUCTION: Hamstring strain injuries (HSI) and re-injuries are endemic in high-speed running sports. The biceps femoris long head (BFlh) is the most frequently injured muscle among the hamstrings. Structural parameters of the hamstring muscle are stated to be susceptible to strain injuries at this location. This retrospective study targeted comparing the BFlh's structural parameters between previously injured and uninjured athletes. METHODS: Nineteen male athletes with previous BFlh strain injury history and nineteen athletes without former lower extremity injury history were included in this study. Fascicle length, mid-muscle belly and distal musculotendinous (MTJ) passive stiffnesses of the biceps femoris long head (BFlh) were examined via b-mode panoramic ultrasound scanning and ultrasound-based shear-wave elastography. Parameter comparisons of both legs within and between athletes with and without injury history were performed. RESULTS: Comparison of the BFlh fascicle length between the injured leg of the injured group and the legs of the controls revealed a trend to shorter fascicle lengths in the injured leg (p = 0.067, d = -0.62). However, the mid-muscle belly passive stiffness of the BFlh was significantly higher in the injured legs (p = 0.009, d = 0.7) compared with the controls. Additionally, the distal MTJ stiffness was much higher in the previously injured legs compared with controls (p < 0.001, d = 1.6). CONCLUSIONS: Outcomes support the importance of BFlh properties related to stiffness, and fascicle length for injury susceptibility in athletes. Future prospective studies should determine whether the higher stiffness in the injured athletes is a cause or consequence of the HSI. Physical therapy and rehabilitation programmes after HSI should focus on BFlh muscle properties i.e., elasticity and fascicle length for reducing re-injury and increasing sports performance.


Assuntos
Músculos Isquiossurais , Traumatismos da Perna , Lesões dos Tecidos Moles , Humanos , Masculino , Músculos Isquiossurais/fisiologia , Estudos Retrospectivos , Estudos Prospectivos , Atletas , Músculos/lesões
5.
Sci Rep ; 14(1): 3692, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355663

RESUMO

The objective of this research is to examine the impact of eccentric training on hamstring flexibility and strength in young dancers during the concluding stages of their foundational dance training program. A total of 24 female, second-year dance students from Hebei Normal University were selected as participants. They were divided into three distinct groups: Nordic hamstring exercise and single-leg deadlift group (NHE&SLD), forward bending exercises and standing leg lift group (FBE&SLL), and a control group (CG). The study was designed around a 6-week training regimen. An isokinetic dynamometer was used to measure seated knee flexor-extensor strength, while electronic goniometry was employed to measure hamstring flexibility in the supine position. Paired sample t-tests were conducted within each group, and one-way analysis of covariance (ANCOVA) was utilized for comparisons between groups. In the NHE&SLD group, significant disparities were observed in both concentric (T = - 5.687, P = 0.001) and eccentric (T = - 3.626, P = 0.008) hamstring strength pre and post-intervention. The pre-intervention dominant leg concentric strength test values significantly influenced the post-intervention outcomes (F = 5.313, P = 0.001, η2 = 0.840). Similarly, the pre-intervention dominant leg eccentric strength test values impacted the post-intervention results (F = 4.689, P = 0.043, η2 = 0.190). Following the intervention, the NHE&SLD group displayed marked changes in the active straight leg raising angle on both left (T = - 4.171, P = 0.004) and right (T = - 6.328, P = 0.001) sides. The FBE&SLL group also revealed significant changes in the active straight leg raising angle on both left (T = - 4.506, P = 0.003) and right (T = - 4.633, P = 0.002) sides following the intervention. The pre-intervention left leg concentric strength test value significantly influenced the post-intervention outcomes (F = 25.067, P = 0.001, η2 = 0.556). Likewise, the pre-intervention right leg eccentric strength test value significantly influenced the post-intervention results (F = 85.338, P = 0.01, η2 = 0.810). Eccentric training can better enhance the flexibility and strength of hamstring muscles in dance students. Traditional stretching training significantly improves the flexibility of the hamstring muscles. Eccentric training has more training benefits than traditional stretching training. It is recommended for dance students to use eccentric training when increasing hamstring flexibility and strength.


Assuntos
Dança , Músculos Isquiossurais , Humanos , Feminino , Músculos Isquiossurais/fisiologia , Força Muscular/fisiologia , Estudantes , Articulação do Joelho/fisiologia
6.
Musculoskelet Sci Pract ; 70: 102898, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38241881

RESUMO

BACKGROUND: Endurance capability in the muscles controlling the knee is poorly understood post anterior cruciate ligament (ACL) reconstruction, despite many sporting activities requiring notable muscle endurance. The hamstring muscles, when active, provide important anatomical support to protect the reconstructed graft. In the absence of good hamstring endurance, fatigue may predispose individuals to re-injury. OBJECTIVE: To assess whether ACL reconstruction (ACLR) with a hamstring graft leads to reduced hamstring endurance 9-13 months post-surgery. STUDY DESIGN: A cross-sectional inter-limb comparison study was undertaken with participants 9-13 months after an ACLR with a hamstring graft, and a group of age, sex, and activity-matched controls. There were 22 participants in each group. METHOD: Submaximal hamstring endurance was measured using a progressive fatigue test on an isokinetic dynamometer at a joint angular velocity of 120°/second. The dependant variable was the maximum number of repetitions performed. Statistical comparisons were made across injured, uninjured and control group limbs. RESULTS: There was a significant (p < 0.05) deficit in hamstring endurance observed between the injured leg (mean: 111 repetitions, SD 49) and uninjured leg (mean: 136 repetitions, SD 67) of the ACL group, but not between the uninjured and control group legs (mean: 124 repetitions, SD 50). CONCLUSION: The 18% deficit in submaximal hamstring endurance across the ACL-reconstructed individual's limbs is indicative of a notable loss in muscle performance at 9-13 months post-surgery. These results provide initial evidence for supporting further research examining the inclusion of hamstring endurance training in ACL rehabilitation programmes post-surgery.


Assuntos
Lesões do Ligamento Cruzado Anterior , Músculos Isquiossurais , Humanos , Ligamento Cruzado Anterior/cirurgia , Músculos Isquiossurais/fisiologia , Lesões do Ligamento Cruzado Anterior/cirurgia , Estudos Transversais , Perna (Membro)
7.
J Biomech ; 163: 111957, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38266532

RESUMO

This study aimed to determine whether changes in hamstrings passive and active shear modulus after a warmup protocol are correlated. Twenty males without a history of hamstring strain injury participated. Muscle shear modulus was assessed using ultrasound-based shear wave elastography at rest and during isometric contractions at 20% of maximal voluntary isometric effort before and immediately after a warmup protocol. Changes in passive shear modulus did not seem to be associated with changes in active shear modulus. The results of this study suggest that changes in passive and active hamstring shear modulus are not associated after a standardized warmup intervention.


Assuntos
Técnicas de Imagem por Elasticidade , Músculos Isquiossurais , Masculino , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Módulo de Elasticidade/fisiologia , Músculos Isquiossurais/diagnóstico por imagem , Músculos Isquiossurais/fisiologia , Técnicas de Imagem por Elasticidade/métodos , Ultrassonografia
8.
BMC Musculoskelet Disord ; 25(1): 34, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38178020

RESUMO

BACKGROUND: Quadriceps strength deficits are known for patients with knee osteoarthritis (OA), whereas findings on hamstrings are less clear. The Adaptive Force (AF) as a special neuromuscular function has never been investigated in OA before. The maximal adaptive holding capacity (max. isometric AF; AFisomax) has been considered to be especially vulnerable to disruptive stimuli (e.g., nociception). It was hypothesized that affected limbs of OA patients would show clear deficits in AFisomax. METHODS: AF parameters and the maximal voluntary isometric contraction (MVIC) of hamstrings were assessed bilaterally comparing 20 patients with knee OA (ART) vs. controls (CON). AF was measured by a pneumatically driven device. Participants were instructed to maintain a static position despite an increasing load of the device. After reaching AFisomax, the hamstrings merged into eccentric action whereby the force increased further to the maximum (AFmax). MVIC was recorded before and after AF trials. Mixed ANOVA was used to identify differences between and within ART and CON (comparing 1st and 2nd measured sides). RESULTS: AFisomax and the torque development per degree of yielding were significantly lower only for the more affected side of ART vs. CON (p ≤ 0.001). The percentage difference of AFisomax amounted to - 40%. For the less affected side it was - 24% (p = 0.219). MVIC and AFmax were significantly lower for ART vs. CON for both sides (p ≤ 0.001). Differences of MVIC between ART vs. CON amounted to - 27% for the more, and - 30% for the less affected side; for AFmax it was - 34% and - 32%, respectively. CONCLUSION: The results suggest that strength deficits of hamstrings are present in patients with knee OA possibly attributable to nociception, generally lower physical activity/relief of lower extremities or fear-avoidance. However, the more affected side of OA patients seems to show further specific impairments regarding neuromuscular control reflected by the significantly reduced adaptive holding capacity and torque development during adaptive eccentric action. It is assumed that those parameters could reflect possible inhibitory nociceptive effects more sensitive than maximal strengths as MVIC and AFmax. Their role should be further investigated to get more specific insights into these aspects of neuromuscular control in OA patients. The approach is relevant for diagnostics also in terms of severity and prevention.


Assuntos
Músculos Isquiossurais , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/diagnóstico , Articulação do Joelho , Músculos Isquiossurais/fisiologia , Contração Isométrica/fisiologia , Extremidade Inferior , Torque , Músculo Esquelético
9.
Med Sci Sports Exerc ; 56(3): 564-574, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051129

RESUMO

PURPOSE: This study aimed to investigate the effect of an isometric (ISO) or Nordic hamstring exercise (NHE) intervention, alongside a sprint training program on hamstring strength, architecture, and sprinting performance in Australian footballers. METHODS: Twenty-five male athletes undertook NHE ( n = 13) or ISO ( n = 12) training across a 38-wk period (including preseason and in season). Biceps femoris long head (BFlh) architecture, ISO, and eccentric knee flexor strength were assessed at baseline, at the end of preseason (14 wk), and at the conclusion of the intervention. Sprint times and force-velocity profiles were determined at baseline and at the end of preseason. RESULTS: After the intervention, both groups had significant improvements in BFlh fascicle length (NHE: 1.16 cm, 95% CI = 0.68 to 1.63 cm, d = 1.88, P < 0.001; ISO: 0.82 cm, 95% CI = 0.57 to 1.06 cm, d = 1.70, P < 0.001), muscle thickness (NHE: 0.11 cm, 95% CI = 0.01 to 0.21 cm, d = 0.51, P = 0.032; ISO: 0.21 cm, 95% CI = 0.10 to 0.32 cm, d = 0.86, P = 0.002), and eccentric strength (NHE: 83 N, 95% CI = 53 to 114 N, d = 1.79, P < 0.001; ISO: 83 N, 95% CI = 17 to 151 N, d = 1.17, P = 0.018). Both groups also finished the intervention weaker isometrically than they started (NHE: -45 N, 95% CI = -81 to -8 N, d = -1.03, P = 0.022; ISO: -80 N, 95% CI = -104 to -56 N, d = -3.35, P < 0.001). At the end of preseason, the NHE group had improved their 5-m sprint time by 3.3% ± 2.0%), and their maximum horizontal velocity was 3% ± 2.1% greater than the ISO group who saw no changes. CONCLUSIONS: Both ISO and NHE training with a periodized sprinting program can increase BFlh fascicle length, thickness, and eccentric strength in Australian footballers. NHE training also improves 5-m sprint time and maximum velocity. However, both interventions reduced ISO strength. These findings provide unique, contextually relevant insights into the adaptations possible in semiprofessional athletes.


Assuntos
Músculos Isquiossurais , Força Muscular , Humanos , Masculino , Estações do Ano , Austrália , Força Muscular/fisiologia , Exercício Físico , Músculos Isquiossurais/fisiologia , Esportes de Equipe
10.
J Sport Rehabil ; 33(1): 27-32, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37917973

RESUMO

CONTEXT: Nordic hamstring strength (NH strength) and single leg bridge test (SLBT) scores are used to predict the risk of hamstring strain injury. Although NH strength and SLBT scores may be related, the relationship between NH strength and SLBT score remains unknown. OBJECTIVES: This study investigated the relationship between NH strength and SLBT scores in university soccer players. DESIGN: Cross-sectional study. SETTING: Research laboratory. PARTICIPANTS: 38 male university soccer players. MAIN OUTCOME MEASURES: NH strength and SLBT scores. INTERVENTIONS: A participant was instructed to lean forward gradually at the slowest possible speed from a kneeling posture with the knee joint flexed 90° for the NH strength measurement. Participants in the SLBT crossed their arms over their chests, pushed down from their heels, and lifted their hips off the ground as many times as they could until they failed. We investigated the relationship between NH strength and SLBT scores in the left and right sides using Spearman rank correlation coefficient. Additionally, we calculated the percentage of left-right asymmetry in NH strength and SLBT scores and investigated the relationship between these variables using Pearson correlation coefficient. RESULTS: There were no significant correlations between NH strength and SLBT scores in the right (rs = .239, P = .16) and left (rs = .311, P = .065) legs. Furthermore, there was no significant relationship between NH strength and SLBT between-limb asymmetry (r = .073, P = .671). CONCLUSIONS: NH strength and SLBT scores could be different indexes, indicating either maximal muscle strength or muscle endurance. Thus, the findings suggested that when assessing risk factors for hamstring strain injury, both NH strength and SLBT scores should be measured.


Assuntos
Músculos Isquiossurais , Futebol , Humanos , Masculino , Futebol/lesões , Perna (Membro) , Estudos Transversais , Universidades , Músculos Isquiossurais/fisiologia , Força Muscular/fisiologia
11.
J Sport Rehabil ; 33(2): 135-139, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37770064

RESUMO

CLINICAL SCENARIO: Hamstring range of motion (ROM) and the influence it has on injury risk is among great discussion in the literature. Hamstring injury may result from hamstring tightness, poor flexibility, or decreased ROM, and many argue that this can be prevented through various intervention strategies. In active populations, risk of further injury, pain, and complications throughout the kinetic chain can occur if minimal hamstring ROM is left untreated. One therapeutic intervention that has been applied to varying parts of the body to help improve function while relieving pain is dry needling (DN). This intervention includes the application of needles to structures to induce responses that might benefit healing and overall stimulation of a neurological response. In this review, the intent is to identify evidence and the effects of DN on hamstring ROM. CLINICAL QUESTION: What are the effects of DN on hamstring ROM? SUMMARY OF KEY FINDINGS: Among total 11 articles, 1 single-blinded randomized controlled trial and 2 double-blinded randomized controlled trials were included in this critically appraised topic. All 3 articles had inconclusive evidence to isolate the application of the DN intervention. There was insufficient evidence to identify if DN independently improved hamstring ROM; however, in combination with interventions such as exercise and stretch plans, there were improvements on ROM. CLINICAL BOTTOM LINE: DN does not significantly increase or decrease the ROM of the hamstrings. When combined with exercise and stretch plans, DN could increase ROM. STRENGTH OF RECOMMENDATION: The grade of B is recommended by the Strength of Recommendation Taxonomy for inconsistent or limited-quality patient-oriented evidence.


Assuntos
Músculos Isquiossurais , Exercícios de Alongamento Muscular , Humanos , Dor , Amplitude de Movimento Articular/fisiologia , Músculos Isquiossurais/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Appl Physiol Nutr Metab ; 49(2): 190-198, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820386

RESUMO

Monitoring the muscle mechanical properties and functions of female athletes throughout their training season is relevant to understand the relationships between these factors and to predict noncontact injuries, which are prevalent among female athletes. The first aim of this study was to determine whether female handball players' passive stiffness of the hamstring muscles is associated with hamstring extensibility, strength of knee flexors and extensors, and lower limb stiffness. Additionally, the study monitored fluctuations in these factors over 25 weeks. The study utilized an isokinetic dynamometer to record hamstring passive stiffness, extensibility, and hamstring and quadriceps strength of 18 young handball players. Lower limb stiffness was determined from a countermovement vertical jump conducted on a force plate. The countermovement jump involved the calculation of the peak force during the eccentric phase and the mean force during the concentric phase. The results showed a positive correlation between hamstring passive stiffness and lower limb stiffness (r = 0.660, p < 0.01), knee flexion and extension strength (r = 0.592, p < 0.01 and r = 0.497, p < 0.05, respectively), and eccentric peak force (r = 0.587, p < 0.01) during jumping. The strength of knee extensors increased significantly after 6 weeks, and hamstring stiffness after 12 weeks of training. In conclusion, the increased hamstring stiffness following training did not match other factors associated with injury risk. Therefore, preventing multifactorial injury risk requires a comprehensive approach, and monitoring one factor alone is insufficient to predict noncontact injuries in female handball players.


Assuntos
Músculos Isquiossurais , Esportes , Humanos , Feminino , Músculos Isquiossurais/fisiologia , Estações do Ano , Força Muscular/fisiologia , Fatores de Risco
13.
J Strength Cond Res ; 38(3): 510-516, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38090744

RESUMO

ABSTRACT: Ripley, NJ, Comfort, P, and McMahon, JJ. Relationships between modifiable risk factors of hamstring strain injury. J Strength Cond Res 38(3): 510-516, 2024-The aims of this study were to determine whether any relationship exists between eccentric hamstring strength and isokinetic strength imbalances and bicep femoris long head (BF LH ) architecture. Eighteen physically active men (age 24.7 ± 4.3 years, height 181.9 ± 7.2 cm, mass 84.9 ± 12.9 kg) had resting BF LH muscle architecture assessed using ultrasound, with images taken at the midmuscle belly. Measures of isokinetic strength of the knee extensors and flexors involved subjects performing 3 maximal effort repetitions of concentric knee extension and eccentric knee flexion at 60°·s -1 . Good-excellent relative reliability (intraclass correlation coefficient ≥0.86) and low variability (coefficient of variation <10%) were observed for all variables. Relative BF LH fascicle length (FL) demonstrated significant moderate-to-nearly-perfect associations with isokinetic measures identified as hamstring strain injury risk factors ( p < 0.05, r = 0.38-0.92), whereas absolute BF LH FL was not significantly or meaningfully associated with isokinetic measures ( p = 0.07-0.961, r = 0.01-0.30). Relative BF LH FL should be considered when assessing resting BF LH muscle architecture because it is potentially a more appropriate measure of injury risk because of its greater association with strength measures. However, absolute BF LH FL may have a greater usefulness during growth, maturation, and individual proportions.


Assuntos
Músculos Isquiossurais , Joelho , Masculino , Humanos , Adulto Jovem , Adulto , Reprodutibilidade dos Testes , Joelho/fisiologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Músculos Isquiossurais/fisiologia , Fatores de Risco , Força Muscular/fisiologia
14.
PeerJ ; 11: e16506, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38054019

RESUMO

Background: The association between hamstring tightness and knee osteoarthritis (KOA) is significant because tight hamstrings can put more strain on the knee joint, reduce its range of motion, and cause compensatory movements that worsen the KOA. Objective: To compare the effects of instrument-assisted soft tissue mobilization (IASTM) and proprioceptive neuromuscular (PNF) on hamstring flexibility in patients with KOA. Methods: Data for the randomized controlled trial (NCT05110326) was collected from n = 60 participants randomly divided into group A received IASTM and group B received PNF stretching. In group A, the therapist made 30 strokes gentle strokes with the tool from the origin to the insertion while holding the plane at a 45-degree angle over the treatment area. In group B, PNF stretching was done with three repetitions and 10 seconds rest between each, after isometric contraction of the hamstring muscle using approximately 50% of their maximum strength, holding it for 8 seconds, and then releasing it. A 30-minute session was given to each patient three times per week and was given for 6 weeks. Outcome measures were the visual analog scale (VAS) for pain intensity, the active knee extension test (AKET) for hamstring flexibility, and the Western Ontario and McMaster Universities Arthritis Index (WOMAC) for the health status of KOA patients. Results: The study found a significant interaction (p < 0.001) between interventions and time across several measurements. After 6 weeks, both interventions resulted in significant improvements (p < 0.001) across all dependent variables, with group A (IASTM) showing more significant improvement in hamstring flexibility, pain reduction, and health status (p < 0.001) compared to group B (PNF). Conclusions: Both the IASTM technique and PNF stretching resulted in increased hamstring flexibility, decreased pain, and enhanced general health. The IASTM technique, however, showed potential benefits over PNF stretching in terms of flexibility, pain relief, and public health enhancement. Physical therapists and manual therapists may prioritize the usage of the IASTM technique for patients who want to make significant changes in these areas.


Assuntos
Músculos Isquiossurais , Exercícios de Alongamento Muscular , Osteoartrite do Joelho , Humanos , Músculos Isquiossurais/fisiologia , Osteoartrite do Joelho/terapia , Articulação do Joelho , Dor
15.
Apunts, Med. esport (Internet) ; 58(220)October - December 2023. tab, graf
Artigo em Inglês | IBECS | ID: ibc-226539

RESUMO

Introduction: Continuous evaluations of athletes, including strength testing, can help control performance improvement or facilitate the restoration of normality after an injury. The aim of the present study was to prospectively determine the peak torque (PT), angle at which PT is achieved, and functional ratios of flexors and extensors thigh muscles during one season. Material and methods Thirty semi-professional male athletes competing in long jumping (n = 10), javelin throwing (n = 10), and sprinting (n = 10) participated. PT was evaluated in relation to limb length; the angle at which PT was achieved was obtained from the force-curve displayed in the isokinetic dynamometer; functional ratios were calculated by dividing concentric hamstring strength by eccentric quadriceps strength (flexor ratio) or vice-versa for the extensor ratio. Assessment was performed at 60º/s and 300º/s. Results Significant variations were seen for both extensor and flexor PTs at different stages of the season, with moderate to large effect sizes observed (effect size (d) = 0.49–0.93). Functional ratios and the angle at which peak torque was achieved remained stable throughout the season. Conclusions Thigh muscle strength is unstable throughout a track and field season, coaches or medical staff should consider these findings when programming training sessions or rehabilitating an athlete. (AU)


Assuntos
Humanos , Masculino , Atletas , Torque , Músculos Isquiossurais/fisiologia , Músculo Quadríceps/fisiologia , Extremidades/fisiologia
16.
PLoS One ; 18(12): e0293938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38100489

RESUMO

PURPOSE: Nordic hamstring exercise (NHE) and razor hamstring curl (RHC) are usually performed to train hamstring eccentric contraction strength. However, it is unclear whether there are differences in the intensity of the two methods and the amount of loading on each muscle. Therefore, this study was conducted using peak eccentric force and each muscle surface electromyogram (s-EMG) to provide useful information to decide whether NHE or RHC should be prescribed for training and rehabilitation. METHODS: s-EMG electrodes were placed in the medial gastrocnemius, lateral gastrocnemius, biceps femoris, semitendinosus, gluteus maximus, and erector spinae of the dominant leg of the fifteen healthy male university students with exercise habits. Maximum voluntary isometric contractions of 3 seconds were performed on each muscle followed by NHE and RHC in random order. The outcome variables included peak eccentric force and s-EMG of each muscle calculated by means amplitude during the NHE and RHC. RESULTS: Peak eccentric force was significantly higher in RHC than in NHE (p = 0.001, r = 0.73). However, NHE was significantly higher in s-EMG of semitendinosus (p = 0.04, r = -0.52) than RHC. However, there were no significant differences in EMG of the medial gastrocnemius (p = 0.202, r = -0.34), lateral gastrocnemius (p = 0.496, r = 0.18), biceps femoris (p = 0.061, r = -0.48), gluteus maximus (p = 0.112, r = -0.41), erector spinae (p = 0.45, r = 0.20) between NHE and RHC. CONCLUSIONS: For NHE and RHC, the peak eccentric force exerted during the exercise was significantly higher for RHC, and the s-EMG of semitendinosus was significantly higher for NHE.


Assuntos
Músculos Isquiossurais , Humanos , Masculino , Eletromiografia , Músculos Isquiossurais/fisiologia , Exercício Físico/fisiologia , Contração Isométrica/fisiologia , Músculos Paraespinais , Força Muscular/fisiologia
17.
J Strength Cond Res ; 37(11): 2158-2166, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37883395

RESUMO

ABSTRACT: Valdes, O, Inzulza, S, Collao, N, Garcia-Vicencio, S, Tufano, JJ, Earp, J, Venegas, M, and Peñailillo, L. Eccentric cycling is an alternative to Nordic hamstring exercise to increase the neuromuscular function of knee flexors in untrained men. J Strength Cond Res 37(11): 2158-2166, 2023-Nordic hamstring exercise (NHE) has been proposed to reduce knee flexor (KF) injuries. However, submaximal alternatives to NHE are necessary for the clinical or weaker population. The aim of this study was to compare the effects of Nordic hamstring training (NHT) and eccentric cycling (ECC) training on the neuromuscular function of the KF. Twenty healthy men (27.7 ± 3.5 years) were randomly assigned into 2 groups that performed 10 training sessions (2-3 sessions·week-1) of either NHT (n = 10) or ECC (n = 10). Maximal voluntary isometric contraction of the KF and knee extensor (KE) muscles (MVICKF and MVICKE) was measured, and the hamstring/quadriceps strength (H/Q) ratio was calculated. Furthermore, changes in NHE maximum reaction force (NHE-MRFKF), NHE break-point angle (NHE-BPA), and muscle activity of the semitendinosus (STEMG) and biceps femoris (BFEMG) during the NHE after the interventions were compared. Although no group × time effects were observed (p = 0.09-0.70), but time effects were found for all variables. Pairwise comparisons revealed that MVICKF (+16.9%; p = 0.02), H/Q ratio (+11.8%; p = 0.01), NHE-MRFKF (+19.8%; p = 0.005), and NHE-BPA (+30.8%; p = 0.001) increased after ECC, whereas NHE-MRFKF (+9.7%; p = 0.003), NHE-BPA (+35.5%; p = 0.0002), and STEMG (+33.7%; p = 0.02) increased after NHT. A group × time effect was observed (p = 0.003) in BFEMG, revealing an increase only after ECC (+41.1%; p < 0.0001). Similar neuromuscular adaptations were found after both training modalities. Therefore, ECC provides similar adaptations as NHT and may serve as an alternative form of KF training for those unable to perform NHE.


Assuntos
Músculos Isquiossurais , Masculino , Humanos , Músculos Isquiossurais/fisiologia , Força Muscular/fisiologia , Joelho , Articulação do Joelho/fisiologia , Exercício Físico/fisiologia
18.
Scand J Med Sci Sports ; 33(12): 2423-2443, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37668346

RESUMO

INTRODUCTION: Hamstring strain injury (HSI) remains a performance, economic, and player availability burden in sport. High-speed running (HSR) is cited as a common mechanism for HSI. While evidence exists regarding the high physical demands on the hamstring muscles in HSR, meta-analytical synthesis of related activation and kinetic variables is lacking. METHODS: A systematic search of Medline, Embase, Scopus, CINAHL, SportDiscus, and Cochrane library databases was conducted in accordance with the PRISMA 2020 guidelines. Studies reporting hamstring activation (electromyographic [EMG]) or hamstring muscle/related joint kinetics were included where healthy adult participants ran at or beyond 60% of maximum speed (activation studies) or 4 m per second (m/s) (kinetic studies). RESULTS: A total of 96 studies met the inclusion criteria. Run intensities were categorized as "slow," "moderate," or "fast" in both activation and kinetic based studies with appropriate relative, and raw measures, respectively. Meta-analysis revealed pooled mean lateral hamstring muscle activation levels of 108.1% (95% CI: 84.4%-131.7%) of maximal voluntary isometric contraction (MVIC) during "fast" running. Meta-analysis found swing phase peak knee flexion internal moment and power at 2.2 Newton meters/kilogram (Nm/kg) (95% CI: 1.9-2.5) and 40.3 Watts/kilogram (W/kg) (95% CI: 31.4-49.2), respectively. Hip extension peak moment and power was estimated as 4.8 Nm/kg (95% CI: 3.9-5.7) and 33.1 W/kg (95% CI: 17.4-48.9), respectively. CONCLUSIONS: As run intensity/speed increases, so do the activation and kinetic demands on the hamstrings. The presented data will enable clinicians to incorporate more objective measures into the design of injury prevention and return-to-play decision-making strategies.


Assuntos
Músculos Isquiossurais , Corrida , Lesões dos Tecidos Moles , Adulto , Humanos , Músculos Isquiossurais/fisiologia , Cinética , Contração Isométrica/fisiologia , Força Muscular , Corrida/fisiologia
19.
Sports Med ; 53(12): 2321-2346, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37668895

RESUMO

An eccentrically lengthening, energy-absorbing, brake-driven model of hamstring function during the late-swing phase of sprinting has been widely touted within the existing literature. In contrast, an isometrically contracting, spring-driven model of hamstring function has recently been proposed. This theory has gained substantial traction within the applied sporting world, influencing understandings of hamstring function while sprinting, as well as the development and adoption of certain types of hamstring-specific exercises. Across the animal kingdom, both spring- and motor-driven muscle-tendon unit (MTU) functioning are frequently observed, with both models of locomotive functioning commonly utilising some degree of active muscle lengthening to draw upon force enhancement mechanisms. However, a method to accurately assess hamstring muscle-tendon functioning when sprinting does not exist. Accordingly, the aims of this review article are three-fold: (1) to comprehensively explore current terminology, theories and models surrounding muscle-tendon functioning during locomotion, (2) to relate these models to potential hamstring function when sprinting by examining a variety of hamstring-specific research and (3) to highlight the importance of developing and utilising evidence-based frameworks to guide hamstring training in athletes required to sprint. Due to the intensity of movement, large musculotendinous stretches and high mechanical loads experienced in the hamstrings when sprinting, it is anticipated that the hamstring MTUs adopt a model of functioning that has some reliance upon active muscle lengthening and muscle actuators during this particular task. However, each individual hamstring MTU is expected to adopt various combinations of spring-, brake- and motor-driven functioning when sprinting, in accordance with their architectural arrangement and activation patterns. Muscle function is intricate and dependent upon complex interactions between musculoskeletal kinematics and kinetics, muscle activation patterns and the neuromechanical regulation of tensions and stiffness, and loads applied by the environment, among other important variables. Accordingly, hamstring function when sprinting is anticipated to be unique to this particular activity. It is therefore proposed that the adoption of hamstring-specific exercises should not be founded on unvalidated claims of replicating hamstring function when sprinting, as has been suggested in the literature. Adaptive benefits may potentially be derived from a range of hamstring-specific exercises that vary in the stimuli they provide. Therefore, a more rigorous approach is to select hamstring-specific exercises based on thoroughly constructed evidence-based frameworks surrounding the specific stimulus provided by the exercise, the accompanying adaptations elicited by the exercise, and the effects of these adaptations on hamstring functioning and injury risk mitigation when sprinting.


Assuntos
Músculos Isquiossurais , Corrida , Animais , Humanos , Músculos Isquiossurais/fisiologia , Músculo Esquelético/fisiologia , Corrida/fisiologia , Tendões , Fenômenos Biomecânicos
20.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571672

RESUMO

Stretching is an effective exercise for increasing body flexibility and pain relief. This study investigates the relationship between stretching intensity and relaxation effects, focusing on brainwaves and autonomic nervous system (ANS) activity. We used a crossover design with low- and high-intensity conditions to elucidate the impact of varying stretching intensities on neural activity associated with relaxation in 19 healthy young adults. Participants completed mood questionnaires. Electroencephalography (EEG) and plethysmography measurements were also obtained before, during, and after stretching sessions. The hamstring muscle was targeted for stretching, with intensity conditions based on the Point of Discomfort. Data analysis included wavelet analysis for EEG, plethysmography data, and repeated-measures ANOVA to differentiate mood, ANS activity, and brain activity related to stretching intensity. Results demonstrated no significant differences between ANS and brain activity based on stretching intensity. However, sympathetic nervous activity showed higher activity during the rest phases than in the stretch phases. Regarding brain activity, alpha and beta waves showed higher activity during the rest phases than in the stretch phases. A negative correlation between alpha waves and sympathetic nervous activities was observed in high-intensity conditions. However, a positive correlation between beta waves and parasympathetic nervous activities was found in low-intensity conditions. Our findings suggest that stretching can induce interactions between the ANS and brain activity.


Assuntos
Músculos Isquiossurais , Exercícios de Alongamento Muscular , Humanos , Adulto Jovem , Sistema Nervoso Autônomo/fisiologia , Eletroencefalografia , Exercício Físico , Músculos Isquiossurais/fisiologia , Sistema Nervoso Simpático/fisiologia , Estudos Cross-Over
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...